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Abstract 

Nucleate pool boiling is a mode of pool boiling that tends to transfer heat more efficiently 

than the other modes of pool boiling. Many studies have been done to augment the heat 

transferred during nucleate pool boiling. Various methods of heat transfer augmentation in 

boiling can be performed through active treatments (mechanical aids, surface/fluid vibrations, 

etc.) or passive treatments (functional coating, surface roughening, etc.). This study focuses 

primarily on a passive treatment, specifically TiO2 coating, which involves testing a substrate 

coated with TiO2 using NeverWetTM base coating as a coupling agent and coated using a method 

outlined by Wu et al. [7]. The results are evaluated by comparing the overall boiling curve and 

heat transfer coefficient with other baseline samples for water. Anatase TiO2 was chosen as the 

material for this study because it is naturally hydrophilic, and interestingly, it can become super-

hydrophilic after being exposed to ultraviolet light at a wavelength of less than 380 nm. The 

focus, however, is on its physical properties.  

A large factor for heat transfer in nucleate pool boiling is the formation of bubbles, 

bubble release, and the number of active nucleation sites on the sample. Nucleation sites can 

only be active for a favorable geometry (the cavity radius must be within a specific range) and 

must be within an area of influence where the waiting period of the site is less than the rest of the 

cavities. The water contact angle of the sample and the tilt angle of the sample also influences 

the formation and detachment of the bubbles on the sample. Based on this information, this study 

investigates cylindrical samples coated with TiO2. With a lower contact angle, the cylindrical 

sample yielded more active nucleation sites which resulted in enhancement of heat transfer in 

nucleate pool boiling conditions. The TiO2 without the coupling agent yielded an 8% 

improvement in critical heat flux as opposed to the baseline Al 6061 substrate. This enhancement 
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was backed up using image processing to gather bubble departure frequency and bubble diameter 

data to use on a current vapor-exchange model – this model and the experimental data was 

compared in this study. The bubble departure frequency was significantly higher in TiO2 coated 

substrate than the baseline sample, while the bubble diameters, overall, were lower, thus 

agreeing with the analytical models of the roles of interfacial tension in bubble formation and 

departure. 
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Chapter 1. Introduction 

1.1. General overview of pool boiling 

Pool boiling occurs when a heated surface is submerged in a body of liquid. Pool boiling 

has applications in thermal management systems such as refrigeration and boiling, heat 

dissipation in various systems, and nuclear reactors. Generally, heat transfers more efficiently  

during nucleate pool boiling, so these applications can benefit from increased pool boiling 

efficiency by saving on energy input. The pool boiling curve is generated from a correlation of 

the heat flux applied to the surface and the wall superheat, which is the temperature difference 

between the surface of the boiling surface and the saturation temperature of the working fluid. 

The relationship between the heat flux and wall superheat  can be seen in Equation (1.1): 

𝑞" = ℎ(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

 

(1.1) 

 where 𝑞" is heat flux, ℎ is the boiling heat transfer coefficient, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the temperature of the 

boiling surface, 𝑇𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the saturation temperature of the working fluid, and the wall 

superheat is the difference between 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and  𝑇𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 [1].  
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There are four different modes to pool boiling based on the trends of the boiling curve: 

free convection boiling, nucleate pool boiling, transition boiling, and film boiling. Free 

convection boiling starts to occur when the surface temperature is slightly over the saturation 

temperature; bubbles begin to form during this stage. As the surface temperature increases even 

further, nucleate boiling begins to occur. The nucleate boiling onset can be visually observed as 

bubbles start to emerge from nucleation points of the surface. As the wall superheat starts to 

increase, more nucleation sites become active, eventually leading to the emergence of many 

bubbles around the heated surface – this phase of nucleate boiling is categorized as columns and 

slugs. During nucleate boiling, as the wall superheat increases, the heat flux eventually reaches 

its highest peak – this is known as the Critical Heat Flux (CHF). Once the working fluid passes 

the CHF, transition boiling begins to occur – this can be observed because bubbles are forming 

Figure 1.1: General pool boiling curve with graphics of bubble formation in each phase. 
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rapidly and beginning to form vapor films on the surface. After further increasing the wall 

superheat, eventually, the fluid will reach the Leidenfrost point, where the heat flux is at a 

minimum and the boiling surface is covered by a vapor blanket – once the fluid has passed this 

point, film boiling occurs and heat is transferred through conduction and radiation of the vapor 

film [1].  

When the heat flux increases beyond the critical heat flux, heat transfer is severely 

limited. This is called boiling crisis. When the heat flux approaches the CHF, dry spots on the 

heated surface form continuously and are rewetted by the surrounding working liquid. Boiling 

crisis is characterized when one or more of these localized dry spots spread irreversibly. Figure 

1.2 displays an illustration of bubble formation and rewetting of a dry spot during nucleate pool 

boiling. 
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Figure 1.2: Illustration of a dry spot formation in nucleate pool boiling. 

Boiling crisis can be delayed through the implementation of active techniques, such as vibrations 

or electrostatic fields, or through passive techniques such as surface roughening and other 

surface treatments.  

 Forster and Greif [2] broke down boiling heat transfer into four mechanisms: micro-

convection in the sublayer, the bubbles behavior, latent heat transport by bubbles, and vapor-

liquid exchange. The first mechanism is the micro-convection in the sublayer; Forster and Greif 

discuss that thermal conduction cannot adequately account for large heat fluxes and that the 

liquid velocity that is induced by bubble growth is large enough to determine temperature 

distribution in the sublayer near the heat source. They also mention that the wall superheat is the 

driving potential for heat flux, as shown in Equation (1.1). For mechanism 2, Forster references 

Sabersky and Mulligan [3] who performed experiments based on a suggestion by H.S. Tsien [4] 

that bubbles act as surface roughness during boiling heat transfer with forced convection; 

therefore, increasing turbulent exchange of liquid between the surface and liquid. In mechanism 
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3, Forster discusses the transport of latent heat of vaporization through bubbles. Lastly, in 

mechanism 4, Forster discusses that the bubbles also transfer heat during their growth by pushing 

hot liquid from the heating surface into the stream. Out of the four mechanisms, however, it 

appears that Forster believed that the first mechanism was the largest contribution to boiling heat 

transfer, whereas the other three mechanisms have minor contribution towards overall boiling 

heat transfer. 

 

1.2. Pool boiling heat transfer enhancement through passive treatment techniques 

Active techniques for pool boiling heat transfer enhancement generally require 

mechanical aids; however, this study does not aim to utilize any active techniques. Passive 

techniques for heat transfer enhancement include use of surface treatments and coatings, 

adjusting geometries, and utilizing material properties. Previous studies that have been done 

include experiments done with Dhillon et al. [5] on surface texturing using parametrically 

designed plain and nano-textured micropillar surfaces, fabrication and testing of aluminum oxide 

nano-porous surfaces (NPS) conducted by Lee et al. [6], investigation of pool boiling of water 

and FC-72 on silicon oxide and titanium oxide surface done by Wu et al. [7], and 

experimentation of various assembled carbon nanotubes and nano-porous structures conducted 

by Zhang and his coworkers [8–10]. Active techniques may be relevant for future work studies, 

and will be discussed in the conclusion. Passive techniques are employed in this study such as 

surface roughening and coating, and factors such as heater geometry and wettability are 

considered.  
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1.3. Previous studies with titanium dioxide coating 

A study of evaporation and pool boiling using Titanium Dioxide (TiO2) was first 

conducted by Takata et al. [11] because of its ability to be both hydrophilic and oleophilic [12]. 

This means that TiO2 has an affinity for absorbing water and repelling oils. TiO2 has two typical 

crystal structures – anatase and rutile; the anatase structure was the focus of study for Takata. 

TiO2 becomes superhydrophilic and gains self-cleaning properties (because the TiO2 becomes 

oleophobic and rejects oils) when irradiated by ultraviolet light with a wavelength shorter than 

380 nm. This study reported the contact angle of irradiated TiO2 surfaces to be nearly 0˚ when 

using the RF Magnetron sputtering process and being irradiated by UV light for 20 hours. 

Further studies were conducted by Wu et al. [7] focusing on the nucleate pool boiling heat 

transfer enhancement on titanium oxide and silicon oxide surface. Copper was used as the 

substrate for the coating. This study reported water contact angles as low as 9˚ for a TiO2 coated 

copper surface and CHF enhancement of 50.4% in water and 38.2 in FC-72 and confirmed that 

the hydrophilicity of the TiO2 coated surface provided additional enhancement of heat transfer in 

pool boiling.  

 

1.4. Objectives of the study  

The objective of this study is to observe the effects that anatase TiO2 has on heat transfer 

during nucleate pool boiling when applied to a horizontal, cylindrical Al 6061 geometry and 

compare the critical heat flux data of each. Furthermore, this study aims to observe the impact 

the sample’s surface profile has on nucleate pool boiling based on contact angle, cavities, and 

active nucleation sites through qualitative analysis and the use of video processing through 



www.manaraa.com

7 

MATLAB. Lastly, this study aims to verify Forster and Greif’s model that compares bubble 

departure and size with overall heat flux.  

 

1.5. The structure of this thesis 

In Chapter 2, the experimental setup is discussed. The chapter entails the design  

of the pool boiling chamber, the experimental procedures of cleaning the samples and acquiring 

the necessary data, data reduction, uncertainty analysis, methods of preparing the samples, and 

contact angle and surface profile information. 

 Chapter 3 discusses the data acquired experimentally, and visualization information from 

conducting pool boiling on the various samples. The pool boiling curve for the baseline samples 

and coated samples are generated and discussed. Furthermore, the visualization method and 

information is provided for a qualitative view of the differences between the baseline and treated 

samples. 

 Finally, Chapter 4 is the conclusion of this thesis. This chapter includes the conclusion 

that was drawn from experimentation and analysis, more optimal pool boiling chamber designs, 

and suggested future work. The appendices include supplemental data from the study. 
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Chapter 2. Experimental Setup 

2.1. Pool boiling chamber design and setup 

The pool boiling experimentation was completed using the chamber seen in Figure 2.1. 

The housing consists of stainless steel housing with PTFE plates on each side. The stainless-steel 

housing was 101.6 mm x 101.6 mm x 177.8 mm and the PTFE plates on each side were 152.4 

mm x 152.4 mm with a thickness of 12.7 mm. Insulation was used around the chamber to 

minimize heat loss within the system. The cylindrical aluminum 6061 samples (diameter of 19.1 

mm and length 101.6 mm) length were machined to fit a 400W McMaster-Carr high-temperature 

cartridge heater in the center of the samples, and T-type thermocouples in the four edges of the 

surface. This design was based on the pool boiling setup used in Zhang’s dissertation [8]. 

 
Figure 2.1: Pool boiling chamber experimental setup and Al 6061 heater 
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Figure 2.2: CAD of the boiling chamber housing and PTFE plates 

 

 Aluminum 6061 was used as the base material of the heater samples. Al 6061 is 

composed of 95.1-98.2% aluminum, and small percentages of chromium, copper, iron, 

magnesium, manganese, nickel, silicon, titanium, zinc, and zirconium. It has a thermal 

conductivity of 167 W/m-K, melts at 582˚C, and a specific heat capacity of 0.896 J/g- ˚C. Some 

common uses of this alloy include: vehicle parts, pipe fittings, and containers [13].  

An IO Tech Personal DAQ 56 was used for data acquisition and an Agilent Technologies 

DC power supply was used to power the heater. The chamber also consisted of an auxiliary 

heater placed below the sample to increase water temperature to boiling, a T-type thermocouple 

to monitor the water temperatures, and a reflux condenser was used with a Polyscience constant 

temperature controller to maintain the volume of water.  
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2.2. Experimental procedures 

The pool boiling chamber and samples were cleaned with acetone and rinsed with DI 

water prior to conducting the experiment. Afterwards, the thermocouples were calibrated and 

connected to a HP laptop for data recording. The boiling chamber was assembled, and Omega 

thermal paste was applied to the cartridge heater and T-type thermocouples and inserted into the 

sample. Next, the chamber was filled with distilled water and the Polyscience temperature 

controller was connected to the reflux condenser and turned on. Power was applied at 5 V every 

5 minutes to the auxiliary heater to increase the water temperature to saturation, and once the 

saturation temperature was reached, the power for the cartridge heater was turned on. The power 

was increased 5 V at a time until a visible transition into film boiling was observed as shown in 

Figure 2.3. 
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Figure 2.3: TiO2 coated Al 6061 reaching transition boiling (working fluid is water, 

cylinder diameter is 19.1 mm)  

 

Once transition boiling started to occur, the data collection ended and the critical heat flux is 

estimated based on the time the data collection stops. Temperature data from the thermocouples 

was gathered in separate sheets (1 sheet at each voltage) using the PersonalDAQ software and 

Microsoft Excel. 
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2.3. Data reduction         

 The power input from the Agilent Technologies DC power supply to the McMaster-Carr 

High-Temperature cartridge heater is estimated using Ohm’s Law as seen in Equation (2.1). By 

dividing the power input by the area of the sample, the heat flux is calculated, as seen in 

Equation (2.2). 

            𝑄 = 𝑉𝐼 (2.1) 

            𝑞" =
𝑄

𝐴
 (2.2) 

 

The 𝑄 represents the total heat applied to the heater in kW, 𝑉 is the voltage applied to the heater 

in V, 𝐼 is current applied to the heater in A, 𝐴 is area of the boiling surface in m2, and 𝑞" is heat 

flux in kW/m2
.  

To accurately plot the pool boiling curve, the temperature readings from the 

thermocouples needed to be modified to reflect the temperature on the surface of the substrate. 

Figure 2.4 outlines the location of the power source input, the location of the thermocouples 

recording the temperature data, and the surface. Four thermocouples are placed in the sample so 

that the temperature data can be acquired from the top, left, right, and bottom of the sample. The 

average of these temperatures is used to find the wall superheat for the pool boiling plots against 

heat flux. 
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Figure 2.4: Image of aluminum 6061 heater sample outlining placement of power input and 

thermocouples 

To find the temperature of the surface, a 1-D heat conduction equation is applied in the radial 

direction. This yields Equation (2.3). 

 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑡ℎ𝑒𝑟𝑚𝑜 −
𝑄

2𝜋𝐿
[

𝑙𝑛(𝑟𝑜)−𝑙𝑛(𝑟𝑡ℎ𝑒𝑟𝑚𝑜)

𝑘
] 

 

(2.3) 

In Equation (2.3), Tsurface is the temperature of the surface, Tthermo is the temperature read by the 

thermocouple, L is length of the rod, ro is the total radius of the cylinder, rthermo is the distance 

between the center and center of the thermocouple, and k is thermal conductivity of the boiling 

surface. 

 To account for the total heat loss, the difference between the wall temperature and 

ambient temperature was divided by thermal resistance as shown in equation (2.4): 

𝑄𝑙𝑜𝑠𝑠 =
𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅
 

 

(2.4) 

where 𝑄𝑙𝑜𝑠𝑠 is heat lost in the system, 𝑇𝑤𝑎𝑙𝑙 is the temperature on the wall, and 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is the 

temperature of the surrounding environment.  This resulted in the estimated heat loss shown in 

Table 1. The system was losing about 3 W of heat during the duration of the data collection, this 
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yields a higher impact on the data at lower heat inputs in this system. Heat loss gradually 

increases as the power input goes up; however, percentage loss decreases as the heat input goes 

up. 

Table 1: Estimation of Heat Loss 

Estimation of Heat Loss 

V A Qin (W) T (℃) Qloss (W) Qin, net (W) Percentage Lost 

20.8 0.52 10.8 76.8 2.96 7.86 27.4 

30.4 0.76 23.2 78.5 3.02 20.2 13.0 

40.2 1.01 40.5 79.5 3.06 37.4 7.57 

49.9 1.25 62.4 80.5 3.10 59.3 4.97 

59.6 1.49 89.0 84.8 3.27 85.8 3.67 

64.0 1.60 102.3 86.1 3.32 99.0 3.24 

69.6 1.74 121.0 86.5 3.33 117.6 2.76 

75.4 1.88 141.5 88.1 3.39 138.1 2.40 

 

 

2.4. Uncertainty analysis 

 Kline and McClintock’s technique is used to estimate errors from the uncertainties 

generated by voltage, current, and area [14]. Equation (2.5) was used to determine the random 

error of heat flux. 

Δ𝑞"

𝑞"
= √(

Δ𝑉

𝑉
)

2

 + (
Δ𝐼

𝐼
)

2

+ (
Δ𝐴

𝐴
)

2

 

 

(2.5) 

Δq” is the overall heat flux uncertainty, Δv, ΔI, and ΔA are voltage, current, and area uncertainties. 

The voltage and current uncertainties are generated by the power supply, and the area uncertainty 

can vary from polishing and coating. The voltage and current measurement accuracy of the 

power supply is 0.1% [15]. 

 Systematic uncertainty of the results can come from the overall heat loss of the system 

and thermocouple readings due to uncertain amount of thermal paste applied to the type T 
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thermocouples. The type T thermocouples have an estimated standard error of ±1.0˚C or 0.75%, 

whichever is greater [16]. The uncertainties in the experiment are further discussed in Chapter 

3’s uncertainty section.  

 

2.5. Sample preparation of TiO2 coating 

TiO2 occurs in three different forms in nature: anatase, rutile, and brookite. Mo and 

Ching [17] did a study on the electronic and optical properties of anatase, rutile, and brookite 

TiO2 and summarized that anatase contains 12 atoms per unit cell and rutile contains 6 atoms per 

unit cell, and Cromer and Herrington [18] conducted studies on the structure of anatase and rutile 

TiO2 to find the lattice constants and the distances of the Ti-O bonds. The crystal structures of 

the anatase and rutile TiO2 is tetragonal, whereas the brookite TiO2 is orthorhombic. The anatase 

and rutile structures can be created in a lab setting; however, this is harder with brookite and is 

almost exclusively a naturally occurring crystal structure of TiO2. The rutile structure is closer to 

a cubic structure (c/a = 0.65) whereas anatase c/a value is 2.51 as explained in a study done by 

Srivastava et al. [19].  
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Figure 2.5: Anatase and rutile TiO2 cells marked with 101 and 100 planes  

 Anatase TiO2 is a photocatalyst, and when exposed to ultraviolet light with wavelengths 

shorter than 380 nm, it induces a photocatalytic reaction and contains strong oxidizing power. 

One significant property it gains is self-cleaning due to becoming super oleophobic (a common 

attribute of a surface that is super-hydrophilic), so the surface will absorb water, but reject oils. 

Previous studies from Takata [11] have shown that irradiated anatase TiO2 yielded an increase in 

critical heat flux and better heat transfer during nucleate pool boiling. Without the ultraviolet 

light exposure, however, TiO2 is still an interesting material for pool boiling because of its 

natural hydrophilicity. The TiO2 coating process was based on to the coating process conducted 

in the study by Wu et al. [7].  Some of the results of their study can be attributed to the 101 

crystal structure of TiO2, as seen in Figure 2.6, since it already makes the substrate hydrophilic 

without the UV treatment. 
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Figure 2.6: TiO2 crystal structures: anatase formation (left) and rutile formation (right) 

To apply the TiO2 coating on to the Al 6061 sample, two methods were used. The first 

method was slightly difficult because the geometry of the samples was cylindrical, unlike Wu’s 

[8] square copper samples. Wu’s procedures were followed verbatim. The first step was to polish 

the Al 6061 sample with high grit sand paper. The sample is cleaned using acetone and rinsed 

with DI water. The acetone is to rinse out any deposits and dirt on the sample. Then, an aqueous 

solution was prepared with 1% weight anatase TiO2 and 99% weight ethanol.  Wu reports that 

when the ethanol evaporated, 10 nm sized particles deposited into the surface. Drops of the 

solution were then applied evenly throughout the sample and heated at 200℃ in an oven for 30 

minutes. This was repeated through the four different sides of the sample.  

A second method was used involved the application of the base coating of NeverWetTM 

before applying the solution evenly through the sample. NeverWetTM is used to repel moisture on 
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products and it works by applying two layers of coating – a base coat and a top coat. The base 

coat has a hydrocarbon resin and has naphtha and ester solvents and the top coat has acetone 

solvents [20]. The base coat is used in this method. This method was used because it provides the 

TiO2 with an agent to help latch on to the sample and it would be helpful to observe if the TiO2 

crystal structure, or if overall wettability would have a bigger factor in generating better heat 

transfer in pool boiling. After the sample was prepared, contact angles were taken to verify 

uniformity and Scanning Electron Microscope (SEM) images were taken as seen in Figure 2.7 

and Figure 2.8. 

 

 
Figure 2.7: SEM image of Al 6061 surface with TiO2 coating (x7000 zoom) 
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Figure 2.8: SEM image of Al 6061 surface with TiO2 coating (x12000 zoom) 

The TiO2 crystals in Figure 2.7 and Figure 2.8 seem similar to the 101 structure seen in Figure 

2.6. These crystal structures appear to have an impact on the wettability of the working fluid and 

the surface of the substrate. The contact angle information supports this and can be seen in the 

next section.  

2.6. Contact angle and surface profile of TiO2 coated Aluminum 6061 

The wettability of the working fluid to the surface has an impact on heat transfer in 

condensing and boiling. The wettability can be determined by obtaining the contact angle 

between the surface and liquid droplet. For water, contact angles less than 90 degrees indicate 

that the surface is hydrophilic and the droplet will be spread out through the surface, whereas 
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contact angles of greater than 90 degrees indicate that the surface is hydrophobic and the droplets 

will be more spherical.  

 
Figure 2.9: Surface tension force balance of a liquid droplet on a surface 

 The system in Figure 2.9 shows a liquid droplet and the surface tensions (liquid-gas, 

solid-gas, and solid-liquid). Cheng et al. [21] discusses theoretical considerations of the three 

surface tensions that govern the force balance of the droplet. Young’s equation balances these 

forces as given by Equation (2.6): 

 

𝛾𝐿𝐺 cos 𝜃 = 𝛾𝑆𝐺 + 𝛾𝑆𝐿 

 

(2.6) 

where 𝛾𝐿𝐺 is the surface tension of the liquid-gas interface, 𝛾𝑆𝐺 is the surface tension of the solid-

gas interface, and 𝛾𝑆𝐿 is the surface tension of the solid-liquid interface. Furthermore, Lin et al. 

[22] discusses the role of interfacial tensions and the detachment of air bubbles in flat surfaces 

(emerging and detached bubbles) and tilted plains (emerging bubble, sliding bubble, and 

detached bubble) and summarizes the force components of bubble attachment and detachment in 

the following equations: 
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             𝑓1 =  𝜋𝜙(𝛾 sin θ  + 𝑓𝑏 cos θ) (2.7) 

             𝑓2 = 𝜋𝜙𝛾 cos θ (2.8) 

             𝑓3 =  𝜋𝜙𝑓𝑏 sin θ (2.9) 

             𝑓4  =  𝐵 (2.10) 

             𝑓5  =  0 (2.11) 

 

where 𝐵 is the buoyancy force, θ is the dynamic contact angle, 𝜋𝜙 is the circumference of the 

circular contact base of a bubble on the surface, 𝛾 is interfacial tension, 𝑓𝑏 is force from the gas 

pressure, 𝑓1 is the attaching force, 𝑓2 is the bubble closing force, 𝑓3 is the base expanding force, 

𝑓4 is the bubble detaching force, and 𝑓5 is the bubble drifting force. The closing force and 

expanding force are compared to determine if the circular contact base 𝜋𝜙 is expanding (𝑓3 > 𝑓2) 

or contracting (𝑓3 < 𝑓2) and the bubble detaching force must be greater than the bubble attaching 

force (𝑓4 > 𝑓1)  for bubble detachment to occur. For hydrophilic surfaces, interfacial tension 

affects the bubble closing force (increasing the likelihood of the bubble base contracting) and 

does not have much of an impact of the bubble attaching force [because of the low contact angle 

based on Equation (2.7)]. This means that on a hydrophilic heated surface, it is likely that the 

bubble departure frequency would be higher and the bubble diameter would be smaller than it 

would be on a hydrophobic heated surface. The implications of this is that a very hydrophilic 

surface should yield better heat transfer in pool boiling than it would on a surface that has a 

contact angle of ~90˚.  
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Figure 2.10: Diagram of the force balance of a bubble on a tilted surface  

 

Lin et al. [22] summarized the forces of the bubble as follows in Equations (12-14): 

             𝑓1 = 𝜋𝜙(𝛾 sin θ  + 𝑓𝑏 cos θ) cos α (2.12) 

             𝑓4  =  𝐵 cos α (2.13) 

             𝑓5  =  𝐵 sin α (2.14) 
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where 𝑓1 is the attaching force, 𝑓4 is the bubble detaching force, and 𝑓5 is the bubble drifting 

force, and 𝛼 is the angle of the tilted surface. The bubble closing and expanding force observe no 

change and bubble drifting force becomes a factor. Unlike with a flat, horizontal heater, the 

bubble drifting force can be observed on a cylindrical heater through the sliding of the bubble. 

The bubble slides from the bottom of the sample and drifts up the side and eventually detaches. 

In his PhD dissertation, Zhang [8] discusses the increasing amount of impact water contact angle 

hysteresis has as the angle of a tilted surface increases due to hydrodynamic pressure differences.  

For a cylindrical heater, the bubbles detaching force coincides with buoyancy and there is no 

drifting force, at the sides, the water contact angle hysteresis has a larger impact and distorts the 

bubble, and at the bottom, the drifting force is at the maximum value.  

 
Figure 2.11: Variables and boundaries of a bubble formed on a cavity  

 Figure 2.11 displays bubble nucleation on a cavity. Mathematically, the 1-D transient 

conduction process can be described in the following partial differential equation: 
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𝜕𝜃

𝜕𝑡
= 𝛼(

𝜕2𝜃

𝜕𝑥2
) (2.15) 

  

where 𝜃 is the temperature, 𝑥 is the spatial variable, and 𝑡 is the time variable. The assumptions 

for solving equation (2.15) are the following: a small bubble embryo exists on the cavity mouth, 

the temperature field within the thermal boundary, δ, is constant, and for y > δ, heat transfer by 

molecular diffusion, and for y> δ, turbulent transport results in uniform temperature. The 

temperature profile of the bubble can be derived using the Young-Laplace equation and 

Clausius-Clapeyron equation as the governing equations: 

 

            𝛥𝑝 = −𝜎𝛻̅ ∙ 𝑛̂ (2.16) 

            𝑑𝑠 = (
𝜕𝑠

𝜕𝑣
)

𝑇
 𝑑𝑣 +  (

𝜕𝑠

𝜕𝑇
)

𝑉
 𝑑𝑇 (2.17) 

 

 

where 𝛥𝑝 is the pressure difference, 𝜎 is surface tension, 𝑛̂ is the unit normal pointing out of the 

surface. Because of surface wetting of the cavities, 𝛥𝑝 is assumed to be the equivalent to the 

capillary pressure in a tube, in which case the Young-Laplace equation can be re-written as:  

 

            𝛥𝑝 =
2𝜎

𝑟𝑐
 (2.18) 

 

where 𝑟𝑐 is the radius of the cavity in the surface. This is because the cavities are small enough to 

be assumed a tube. Next, (
𝜕𝑠

𝜕𝑇
)𝑉 𝑑𝑇 term in Equation (2.17) is assumed to be zero because of 

constant temperature and pressure in a closed system during phase change. Applying Maxwell’s 

relation and the assumption to Equation (2.17) yields: 
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            𝑑𝑠 = (
𝜕𝑃

𝜕𝑇
)

𝑉
 𝑑𝑣               (2.19) 

 

 

Since P and T are constant, the derivative of pressure does not change with respect to 

temperature; therefore, the partial derivative of specific entropy may be changed to a total 

derivative, Equation (2.20) and integrating it from initial phase 𝛼 to final phase 𝛽, yields 

Equation (2.21): 

            𝑑𝑠 =
𝑑𝑃

𝑑𝑇
 𝑑𝑣         (2.20) 

            
𝑑𝑃

𝑑𝑇
=

Δs

Δv
                    (2.21) 

 

 

where Δ𝑠 = 𝑠𝛽 − 𝑠𝛼 (the change in entropy from initial phase 𝛼 to final phase 𝛽) and Δ𝑣 = 𝑣𝛽 −

𝑣𝛼 (the change in specific volume from initial phase 𝛼 to final phase 𝛽). Next, using the first law 

of thermodynamic, given constant pressure and temperature, shown in Equation (2.22) and the 

definition of enthalpy, Equation (2.23), Equation (2.24) can be derived by combining Equation 

(2.22) to Equation (2.23): 

             𝑑𝑢 = 𝑇 𝑑𝑠 − 𝑃 𝑑𝑣 (2.22) 

             𝑑ℎ = 𝑑𝑢 + 𝑃 𝑑𝑣 (2.23) 

             𝑑ℎ = 𝑇 𝑑𝑠 (2.24) 

 

Rearranging Equation (2.24) and applying Equation (2.21) to (2.24) yields: 

Δ𝑝 =̃
ℎ𝑙𝑣Δ𝑇

𝑇𝑠𝑎𝑡Δ𝑉
 

 

(2.25) 

where ℎ𝑙𝑣 is the latent heat of vaporization in 
𝐽

𝑘𝑔
. By combining equations (2.18) and (2.25), the 

following relation is formed:  
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Δ𝑝 =
2𝜎

𝑟𝑐
=

ℎ𝑙𝑣Δ𝑇

𝑇𝑠𝑎𝑡𝑣
 

 

(2.26) 

Then, solving for Δ𝑇 yields: 

ΔT =
2σTsat𝑣

ℎ𝑙𝑣𝑟𝑐
 

 

(2.27) 

Finally, by simplifying Equation (2.27), a relationship between the bubble wall superheat and 

latent heat of vaporization, cavity radius, and vapor density is formed in Equation (2.28): 

ΔT =  𝜃𝑤 − 𝜃𝑠𝑎𝑡 =
2𝜎𝑇𝑠𝑎𝑡

ℎ𝑙𝑣𝜌𝑣𝑟𝑐 
 

 

(2.28) 

where 𝜃𝑤 − 𝜃𝑠𝑎𝑡 is the bubble wall superheat in 𝐾, 𝜌𝑣 is the vapor density in 
𝑘𝑔

𝑚3, and 𝑟𝑛 is the 

radius of the surface cavity 𝑚. Equation (2.28) provides insight to the wall superheat temperature 

for the bubbles forming on the surface. This information is relevant when attempting to predict 

the radii range of nucleation site using Hsu’s equation [23] – this is further discussed later in this 

section. 

To find the contact angle of the sample surfaces, the KSV CAM 200 Goniometer was 

used (seen in Figure 2.12). 
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Figure 2.12: KSV CAM 200 Goniometer (Used for quantifying wettability) 

The sessile drops application was used to determine the contact angles between the various 

surfaces. Multiple trials were conducted to find a solid average and to ensure the coating in the 

surfaces were even. 
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Figure 2.13: Water droplet on a plain Al 6061 surface; average contact angle: 81 ˚ 

The contact angle was found by distributing droplets throughout the sample to ensure 

uniformity of the surface. Figure 2.13 shows the droplet on a plain Al 6061 surface. The contact 

angle of the untreated surface was obtained to gain baseline data. The untreated Al 6061 surface 

averaged an 81˚ contact angle and had a standard deviation of 2.16.  

 

Figure 2.14: Water droplet on TiO2 coated Al 6061 with NeverWet; average contact angle: 

65 ˚ 

 Figure 2.14 shows a droplet on a TiO2 coated Al 6061 surface that was treated with 

NeverWetTM. The contact angle on this surface averaged a 65˚ contact angle and had a standard 



www.manaraa.com

29 

deviation of 4.85. This impact in wettability may be attributed to the base coating of 

NeverWetTM. 

 

 
Figure 2.15: Water droplet on a TiO2 coated Al 6061 surface; average contact angle: 15 ˚ 

Figure 2.15 shows a droplet on a TiO2 coated Al 6061 surface. Comparing Figure 2.13, Figure 

2.14, and Figure 2.15, it can be observed that the TiO2 makes the surface significantly more 

hydrophilic. The average contact angle of the surface was 15˚. The contact angle data set had a 

standard deviation of 1.89.  

 The TiO2 coated Al 6061 sample was observed using a VHX 100 optical microscope. 

Using one of the features of the microscope, a surface profile was obtained in the observed area. 

The surface profile can be seen in Figure 2.16.  
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Figure 2.16: Optical microscope generated surface profile of TiO2 coated Al 6061 substrate 

Hsu [23] conducted a study on varying sizes of nucleation cavities and created a model 

that showed the maximum and minimum sizes of effective cavities as functions of sub-cooling, 

pressure, physical properties, and thickness of the thermal boundary layer. In his study, Hsu 

concluded that sizes of active cavity sites are dependent on the limiting thickness of the thermal 

layer, and for the nucleation site to be active, it must have a favorable geometry, the cavity must 

be within the size range of the effect nucleation sites, and nearby cavities need to be within a 

certain area of the site. Figure 2.16 provides a visualization of the surface and allows an 

estimation of cavity information on the surface for comparison to Hsu’s model, which correlates 

cavity radii throughout the surface and the bubble temperature profiles. It also provides 

information such as cavity depth (in this case, the software estimates the difference between the 

highest and lowest points in that particular cross section to be 67.9 microns) through designated 
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cross sections of the sample and can give a general idea of the diameter of such cavities based on 

when the height of the sample comes back up. Hsu’s model for relating cavity size range with the 

bubble temperature profile can be seen in Equation (2.29): 

          {
𝑟𝑐,𝑚𝑎𝑥

𝑟𝑐,𝑚𝑖𝑛
} =

𝛿

2𝐶1
[1 −

𝜃𝑠𝑎𝑡

𝜃𝑤
± √(1 −

𝜃𝑠𝑎𝑡

𝜃𝑤
)

2

−
8𝜎𝑇𝑠𝑎𝑡𝐶2

𝛿𝜃𝑤ℎ𝑙𝑣𝜌𝑣
 ] 

 

(2.29) 

where rc is the radius of the surface cavities, δ is the limiting thermal boundary layer, θ is the 

bubble surface temperature, σ is the surface tension of the liquid with respect to vapor, ℎ𝑙𝑣 is the 

latent heat of vaporization, ρv is the vapor density, and the C’s are experimentally found 

constants. Equation (2.29) is used to help estimate where nucleation points may occur during 

pool boiling.  
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Chapter 3. Visualization and Data Collection of Pool Boiling on TiO2 Coated Surface 

Temperature data and heat flux data was gathered starting with a baseline set with plain 

Aluminum 6061 heaters. After a baseline pool boiling curve was established, an Al 6061 

substrate was prepared with TiO2 coating based on Wu’s method and another substrate was 

prepared with TiO2 coating using NeverWetTM base coating as coupling agent as described in 

Chapter 2. The temperature data and heat flux data was collected and was used to generate pool 

boiling curves for comparison. Furthermore, high-speed camera videos were taken and processed 

to gather data and applied to an analytical model to compare with the experimental data. The 

purpose of this is to see if there is TiO2 yields an improvement in heat transfer during nucleate 

pool boiling 

3.1. Pool boiling on cylindrical aluminum 6061 surface for baseline data 

A pool boiling curve was generated using the temperature data gathered from the 

thermocouples placed in the sample and pool boiling chamber and applying Equations (2.1) and 

(2.2) for the heat flux data and applying the heat conduction equation outlined in Equation (2.3) 

for the temperature data.  
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Figure 3.1: 4 baseline Al 6061 pool boiling curve by trial 

This data was gathered to find a baseline boiling curve of Al 6061. The trials were consistent as 

seen in Figure 3.1.  

Figure 3.2 shows the pool boiling curve data obtained compared with cylindrical plain Al 

6061 pool boiling curve data published by two different investigators: Bhuiya [24] and Zhang 

[8]. There was little overall discrepancy between the three sets of data – Zhang’s data appears to 

show the greatest discrepancy in pool boiling data. A few factors that may contribute to this 

discrepancy can range from variance in heat loss in the pool boiling chambers, differing sizes of 

the pool boiling chamber, or discrepancy in the experimental procedures for data collection. 
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Figure 3.2: Baseline pool boiling curve compared with previously published data 

The pool boiling curves of the individual trials of the two other samples can be found in 

Appendix A. 

3.2. Pool boiling on TiO2 coated Aluminum 6061 Surface 

A pool boiling curve was generated for Al 6061 samples treated with TiO2 with both 

methods. Al 6061 samples treated with NeverWetTM are considered the “coupled sample” and 

the samples that were not treated with NeverWetTM are considered the “uncoupled sample” in 

Figure 3.3. The pool boiling curve generated from the coupled sample trends closely with the 

plain Al 6061 sample, whereas the uncoupled sample yields a pool boiling curve of higher 

performance.  
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Figure 3.3: Pool boiling curve of baseline substrate vs both TiO2 substrates 

When looking at the data for the samples’ wettability in water for the 3 samples, the data in 

Figure 3.3 appears to coincide with the wettability of the samples because the contact angle of 

the coupled sample and plain Al 6061 are relatively close and the uncoupled sample was 

significantly more hydrophilic. This is probably because of the base coating used from 

NeverWetTM. Overall, the sample that was coupled with NeverWetTM performance did not show 

much of an enhancement in boiling heat transfer, and even appears to drop off at high superheat 

and heat flux. The uncoupled sample has an average contact angle (15˚) that is significantly 

lower than the two other samples, so it appears the significant performance enhancement is 

probably due to the wettability and roughness of the surface of the TiO2 coating.  
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A hydrophilic surface with such a low contact angle should yield heat transfer 

enhancement through the help of bubble dynamics (faster departure frequency). This 

enhancement was also visually apparent with the higher bubble departure frequency and 

nucleation sites, and this is further discussed in the next section of the chapter. 

 

3.3. Visualization comparison of pool boiling on plain Al 6061 surface and TiO2 coated 

surfaces 

The Phantom v4.3 high-speed camera was used to take footage of the pool boiling on the 

different surfaces. The camera can record up to 1,000 frames per second, produce videos that are 

600 x 600 pixels, and is capable of continuous recording. The software, CineViewer was used to 

export the Phantom video files and convert them to .avi, .mp4, and .TIFF formats. This is a tool 

to acquire images to qualitatively compare and provide additional insight on pool boing of 

baseline and TiO2 coated samples at varying heat fluxes.  

 

Figure 3.4: Phantom v4.3 High Speed Camera  

Figure 3.5 shows images from the Phantom high-speed camera at varying heat fluxes (40, 

60, and 120 kW-m-2). This allowed for visual observation of the differences in bubble nucleation 

and departure between treated and untreated surfaces of Al 6061.  
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Figure 3.5: High speed camera images of pool boiling of baseline and TiO2 coated sample at 

varying heat fluxes 
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 Comparing the left and right images of Figure 3.5, a clear difference can be observed 

between plain Al 6061 samples and TiO2 treated Al 6061 samples. The difference is very clear at 

a low heat flux of 40 kW/m2, and at 120 kW/m2 the treated sample appears to have a significant 

amount of active nucleation sites. Overall, the Al 6061 samples that were treated with TiO2 have 

significantly more nucleation points and bubble departure frequencies throughout the surfaces of 

the sample. From an observational standpoint, it is easy to draw a conclusion that there is more 

heat transfer occurring (at least through liquid-vapor exchange) with the treated samples through 

these images. This can be verified by using the quantifiable information, such as active 

nucleation sites and bubble departure frequencies, plugging the information into a model (such as 

the vapor-exchange model proposed by Forster and Grief) and comparing the model with the 

experimental data shown in Figure 3.3 [2]. This is discussed later in the chapter in section 3.4. 

 A bubble detection code based on Kimme’s [25] adaptation to the Circle Hough 

Transform (CHT) by Duda and Hart [26] was used to analyze the videos produced by the 

Phantom high-speed camera. This algorithm is computationally efficient and works by plotting 

an arc perpendicular to the edge orientation based on the given radius. A threshold is applied to 

an accumulator array to detect likely centers of circles in the specified area. A .TIFF file was 

exported from the camera and utilized to analyze the video frame by frame. Using the Kimmie’s 

method, the code was used to detect different sized droplets based on the gradient of the images 

in the video file. Recently, Naccarato [27] utilized Kimmie’s algorithm and implemented it using 

functions available in the MATLAB Image Processing Toolbox [28] for his droplet detection 

method in his dropwise condensation experimentation. Naccarato modifies the code to be able to 

find circles of varying radii while masking previously detected circles because the original CHT 

cannot detect a wide range of circle of varying radii in one loop and repeated loops result in false 
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positive detections. Naccarato’s new algorithm was adjusted to fit the needs of detecting bubbles 

for pool boiling. The first step of detection begins with using the Sobel operator [29] for edge 

detection. The Sobel operator works by taking the gradient of the image, G, and generating 3x3 

filters in the x and y directions, Gx and Gy. The magnitude of the gradient can be found in 

Equation (3.1):  

                        |𝐺|  =  √𝐺𝑥
2 + 𝐺𝑦

2 
(3.1) 

The areas in which the magnitude of the gradient is the highest is estimated to be where the 

edges of the image is. 

Figure 3.6 shows a sample image of various colored circles detecting bubbles of sizes 

corresponding to the color through a given area of the sample. For example, a magenta circle 

would be used to trace a circle between 21 and 27 pixels and a yellow pixel would be used to 

trace a circle between 0 and 2 pixels in radii.  
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Figure 3.6: Image of bubble detection processed by MATLAB based on the CHT 

Using the CHT algorithm on MATLAB, bubble counts were obtained by frame. Each 

plot shows the bubble diameter size on the x-axis and the frame number of the video on the y-

axis, and the total bubble count at the diameter and frame on the z-axis, as seen in Figure 3.7. 

More histogram data can be found in Appendix B.  
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Figure 3.7: Histogram of bubble count by frame generated by MATLAB 

 The data found in the histogram was easily exportable to an excel file and the average 

bubble counts at each bubble radii was found at each heat flux the videos were processed at.  

This data was used to fill in variables of the models used in comparison with the experimental 

data. 

 

3.4. Comparison of experimental Data and current models 

The experimental data was compared with the projected boiling curve of Forster and 

Greif. Forster and Greif’s vapor-liquid exchange model is shown in: 
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                        𝑞" = 𝜌𝑙𝑐𝑝𝑙

2𝜋

3
𝑅𝑚𝑎𝑥

3
1

2
𝛥𝑇𝑓𝑁𝑎 

 

(3.2) 

where 𝑞" is the heat flux, 𝜌𝑙 is the liquid density, 𝑐𝑝𝑙 is the specific heat, 𝑅𝑚𝑎𝑥 is the max radius 

of the bubble, 𝛥𝑇 is the wall superheat, 𝑓 is the departure frequency, and 𝑁𝑎 is the active 

nucleation site density. The bubble frequency and radius information was gathered from the 

video files using MATLAB. Based on that data, a plot was generated and compared with the plot 

generated from the experimental data as shown in Figure 3.8. There are a few variables that 

impact the overall heat flux in this model: the max radii of the bubbles, the departure frequency, 

and the number of active nucleation sites.  
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Figure 3.8: Comparison of experimental data with Forster and Freif's model 

The Forster and Grief model [2] seemed to accurately follow the experimental data for the Plain 

Al 6061 towards higher superheat; however, the model seemed to slightly differ from the 

uncoupled version of the TiO2 coated sample. This might be because the area processed on 

MATLAB only takes into account one side of the sample and with higher amounts of nucleation 

points, the model failed to keep up with the experimental data; the other side of the sample 

should be observed in future comparisons. Furthermore, bubble departure frequency had to be 

counted visually frame by frame, with frames being converted to seconds after achieving a raw 

count. This leads to some human error in this type of evaluation. In this specific case, active 

nucleation points seemed to be a dominating factor in the model generated pool boiling curve; 

this is evident in the numbers and video footage. 
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3.5. Uncertainty analysis 

Uncertainty analysis was conducted using Equation (2.5) as discussed in section 2.4 [14]. 

The uncertainties for wall superheat and heat flux were found and tabulated.  

 

Table 2: Heat flux uncertainty 

Heat Flux Uncertainty 
Δv (V) V (V) Δi (A) I (A) Δa (m2) A (m2) q" (kW/m2) Δq” (kW/m2) % Uncertainty 
0.042 20.8 0.001 0.520 0.00012 0.00115 9.44 0.99 5.24 
0.050 24.9 0.001 0.625 0.00012 0.00115 13.6 1.42 5.24 
0.055 27.7 0.001 0.694 0.00012 0.00115 16.8 1.76 5.24 
0.061 30.5 0.002 0.764 0.00012 0.00115 20.3 2.13 5.24 
0.066 33.2 0.002 0.833 0.00012 0.00115 24.1 2.52 5.24 
0.075 37.4 0.002 0.938 0.00012 0.00115 30.6 3.20 5.24 
0.080 40.2 0.002 1.007 0.00012 0.00115 35.3 3.70 5.24 
0.097 48.6 0.002 1.216 0.00012 0.00115 51.6 5.40 5.24 
0.102 51.4 0.003 1.286 0.00012 0.00115 57.7 6.04 5.24 
0.114 57.0 0.003 1.425 0.00012 0.00115 70.9 7.42 5.24 
0.117 58.4 0.003 1.461 0.00012 0.00115 74.4 7.80 5.24 
0.121 60.5 0.003 1.512 0.00012 0.00115 79.8 8.36 5.24 
0.125 62.6 0.003 1.564 0.00012 0.00115 85.4 8.95 5.24 
0.129 64.6 0.003 1.615 0.00012 0.00115 91.0 9.53 5.24 
0.131 65.4 0.003 1.634 0.00012 0.00115 93.2 9.77 5.24 
0.134 66.8 0.003 1.668 0.00012 0.00115 97.2 10.2 5.24 
0.138 68.8 0.003 1.718 0.00012 0.00115 103 10.8 5.24 
0.142 70.9 0.004 1.769 0.00012 0.00115 109 11.5 5.24 
0.146 73.0 0.004 1.821 0.00012 0.00115 116 12.1 5.24 
0.153 76.7 0.004 1.912 0.00012 0.00115 128 13.4 5.24 
0.151 75.3 0.004 1.877 0.00012 0.00115 123 12.9 5.24 

 

The units for Δv and V are in V, Δi and I are in A, and Δq” and q” are in kW/m2. After solving 

for Δq”, it was found that the heat flux had an overall uncertainty of 5.24%. The overall 

uncertainty is large enough to impact the data set; for example, at a heat flux of 128 kW/m2, 

there is a chance the actual heat flux is anywhere from 121.3 to 134.7 kW/m2. This is quite 
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significant when comparing the wall superheat and heat flux to generate the boiling curve, 

especially as the value reaching critical heat flux.  

 The wall superheat uncertainty is solely based on the uncertainty of the T-type 

thermocouples utilized in the experimentation, since the temperature difference only evaluates 

one variable. Omega’s thermocouple reference table states the data produced has an error of 

1.0˚C or 0.75% (whichever is greater) for temperatures above 0˚C. 



www.manaraa.com

46 

Chapter 4. Conclusion 

4.1. Conclusion 

The purpose of this study was to evaluate the physical effects TiO2 coating would have 

on heat transfer in pool boiling using an Aluminum 6061 substrate that had a cylindrical 

geometry. The two methods used to apply the TiO2 coating did not differ much; however, the 

two different samples had varying results. The sample with the TiO2 coating without the use of 

the NeverWetTM base coating yielded the best result in heat transfer enhancement during 

nucleate pool boiling based on the pool boiling curves.  

 The uncoupled sample was significantly more hydrophilic, showed a significant increase 

in active nucleation sites, and had a higher bubble departure frequency than the other samples. 

Using Kimmie’s adaptation of the Circular Hough Transform, and adapting Naccarato’s droplet 

detection method for use in bubble detection, the bubble radii, departure frequency, and amount 

of bubbles were quantifiable on MATLAB. This made it simple to process those data sets to 

input into the Forster and Grief model. This data increased the validity of the conclusion made 

based on the experimental data.  

 Overall, the uncoupled sample showed a CHF improvement of 8% compared to the 

baseline sample and coupled sample results. The highest CHF found for the uncoupled sample 

was 143.6 kW/m2 whereas for the baseline samples it was 128.0 kW/m2. Furthermore, during 

nucleate pool boiling, the uncoupled sample had a far higher number of nucleation points and 

denser bubble populations than the baseline sample did – this data can also be backed up by the 

3-D bar graphs displayed in Appendix B. 
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4.2. Pool boiling chamber design optimization 

There can be significant improvement with the design of the pool boiling chamber. 

Starting with the material, the use of stainless steel throughout the chamber should be sufficient, 

as opposed to using stainless steel with PTFE plates on the sides. The PTFE plates posed an issue 

because when tightened too much, it would bow and cause water to leak out of the chamber – 

this led to a quick fix of backing up the PTFE with steel plates. Additionally, the chamber can be 

significantly smaller – this way there is less wait time for the water to heat up to saturation 

temperature. Furthermore, a total of four thermocouples should have been used to monitor the 

temperature of the water (for redundancy) and should have been placed near the top right, top 

left, bottom right, and bottom corners of the chamber. The auxiliary heater would have been best 

placed in the lower middle area of the chamber.  

 The condensing portion of the unit was also a bit of an issue. In the current design, it was 

difficult to maintain an equilibrium between condensing and boiling; this was largely due to 

physical constraints. The space where steam was travelling up to the condenser, and condensed 

water was coming back down to the chamber was very constricted, which would naturally cause 

an imbalance. For best results, a closed system that includes an internal condenser would be 

optimal for conducting pool boiling testing.  
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Figure 4.1: Sample drawing of suggested improvements to the experimental setup 

 

Figure 4.1 summarizes these suggested fixes in a simple, conceptual drawing. There would be 

more thermocouples; however, since this is a 2D figure, thermocouples placed closer and away 

from the reader would be difficult to designate.  

 The current design also failed to account for easy water removal and sample 

replacement; future designs should include a drain and a method to easily replace samples. With 

the current design, the chamber needed to be taken apart after every test to replace the sample 

and to drain the water. Optimizing the design this way would save a lot of time and give the user 

more opportunities to test various samples. 

 

4.3. Suggested future work 

The appropriate next step to this study would be to take advantage of the photosensitive 

properties of TiO2 and conduct a nucleate pool boiling study of TiO2 coated Al 6061 after being 

exposed to UV light for varying amounts of time. Similar studies have been conducted with 

square heaters and for copper substrates, but it would be interesting to see the observations made 
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using an aluminum substrate and a cylindrical geometry, and if it would result in an even further 

enhancement in heat transfer in pool boiling.  

 

Figure 4.2: Suggested design for future study with UV treatment 

 

Figure 4.2 takes the design of Figure 4.1 and modifies it in a way to evaluate UV irradiated 

samples. A welded wall can be included in the center of the chamber (displayed as a dashed line) 

so that the system can maintain proper equilibrium and have a proper division. Insulation should 

also be applied at this wall in order to maintain integrity of the heat applied in each individual 

system. This enables the user to simultaneously observe the effects UV irradiation has on TiO2 

during pool boiling and provide the user with a baseline at the same time.  
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Another study that would be appropriate to follow this one, would be to create a finite 

element model of the pool boiling system. Two-phase models have been done before; however, 

there is a challenge in modeling a sample with specific grooves, cavities, or micro/nano-

structures and coupling the physics of such materials with the typical two-phase flow physics 

(Navier-Stokes, Energy Balance, etc.). Modeling pool boiling heat transfer on a cylindrical or 

flat surface with TiO2 coating and an aluminum substrate would be great to compare with the 

experimental data found in this thesis and other papers and other models such as Forster and 

Greif’s vapor-exchange model.  
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Appendix A: Plots of trials of pool boiling data for each sample. 

 Appendix A provides the pool boiling curve plots generated by individual trials for each 

type of test conducted. 

Pool boiling curve of TiO2 coated Al 6061 with NeverWetTM base coating: 

 

Figure 4.3: Pool boiling curve of the trials attempted with TiO2 coated with NeverWetTM 
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Pool Boiling Curve of TiO2 without the NeverWetTM base coating: 
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Figure 4.4: Pool boiling curve of TiO2 coated Al 6061 with no coupling agent. 
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All Trials: 
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Figure 4.5: Boiling curve individualized by trial 
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Appendix B: CHT histograms at varying frames and heat fluxes. 

 The data produced by the modified CHT was used to gather data such as bubble count an 

diameter per frame. In this appendix, samples of the total collected data can be found on 3-D 

plots for the tested samples at three varying heat fluxes. This is to give the reader an idea of the 

difference of the results produced by a baseline sampled, and a coated substrate.  

Plain Aluminum 6061 

q” = 40 kW/m2: 

 
Figure 4.6: Bubble count at each diameter per frame (40 kW/m2)  
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q” = 67 kW/m2 

 

Figure 4.7: Bubble count at each diameter per frame (67 kW/m2) 
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q” = 120 kW/m

 

Figure 4.8: Bubble count at each diameter per frame (120 kW/m2) 

 

 The highest bubble count recorded with the baseline samples did not surpass 40 for any 

frame at each heat flux captured. The difference can be seen with the TiO2 coated data (without 

coupling). 
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TiO2 Coated Aluminum 6061 

q” = 40 kW/m2: 

 

Figure 4.9: Bubble count at each diameter per frame (40 kW/m2) 
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Figure 4.10: Bubble count at each diameter per frame (60 kW/m2) 
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q” = 120 kW/m2 

 

Figure 4.11: Bubble count at each diameter per frame (120 kW/m2) 

 

 As the heat flux gets higher, the overall bubble count goes down; however, the count of 

bubbles with larger diameter increases.  
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Appendix C: Boiling curve video footage 

Pool boiling videos will be uploaded to ProQuest as supplemental videos. 
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